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Abstract. The temperature dependence of the off-centre Li position and surrounding lattice 
polarization in Li:KTaOtiscalculated within the quasiharmonicapproximation using anon- 
linear polarizability model. The Li displacement is found to be almost independent of 
temperature. Both the total dipole moment of the regon where the Li dipole moment is 
reinforced by the lattice polarizationand the sizeof this region become smaller with decreas- 
ing temperature. The Li displacement as well as the total dipole moment are described 
quantitatively by this model, provided that the Li wncentration is below -1%. 

1. Introduction 

The perovskite crystals have one of the most extensively investigated structures [l]. It 
is remarkable that for pure KTa03 as well as for mixed KTN crystals, transitions to 
ordered polar phrases have been predicted correctly on the basis of a non-linear pol- 
arizability model [Z]. It is, however, well established that disordered phenomena are 
also present in the mixed KTN phases [3] and in particular in KTa0,:Li where evidence 
for disorder is overwhelming [4]. 

It is thought that the the dipole moments associated with off-centre Li impurities 
interact in a random way and give rise to a dipole glass configuration analogous to a spin 
glass [4, SI. It should then be possible, by applying the non-linear polarizability model, 
to compute the single-spin properties and ultimately the relevant parameters of the 
interaction distribution between Li dipoles. This interaction distribution is still some- 
what controversial and determines the character of the polar phase, whether ordered or 
disordered. 

The single-ion properties of Li constitute the basis of such an investigation. We wish 
thus to apply the non-linear polarizability model to this defect and establish its model 
properties at all temperatures. Next we shall compare the predictions with experimental 
evidence to show that single-ion properties are well described by theory but that there is 
an extremely narrow experimental range of Li concentration where single-ion properties 
are relevant. Based on the success of the model we shall try to develop some aspects of 
the interaction between Li ions in this range. 
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2. Theory 

The Li+ ion, when replacing Kt in KTa03, goes to one of the six off-centre positions 
along the (0011 cubic directions [6]. The resulting dipole moment polarizes the lattice 
such that a region appears around the Li whose total dipole moment PIN is larger than 
the one corresponding to the Li displacement PLi. This fact is supported by experimental 
evidence [7] as well as a model calculation [SI. For Li concentrations below 4% the 
system undergoes a transition to a dipole glass phase, while at higher concentrations a 
mixed ferroelectric behaviour appears [9]. In order to understand the origin of the glassy 
behaviour it is interesting to investigate the size and shape of the polarized region as a 
function of temperature. There are two points of view with regard to this phenomenon. 
According to Vugmeister et a[ [IO] PL, = (&y/3)PLi where &(Tf is the susceptibility of 
pure KTaO, and yis a coupling constant. Plot should thus increase with decreasing T .  It 
has also been argued, however, that the total dipole moment is proportional to the 
correlation volume, which is also only weakly temperature dependent [ I l l .  

In this paper we study the temperature dependence of the lattice configuration 
around a Li defect in the framework in the non-hear shell model previously used to 
determine the static configuration of the system [SI. The defect lattice equilibrium 
condition in the absence of external force is 

A4 G Stuchioni et ul 

aF(s ,  T ) / &  = 0 (1) 
where F(s, T )  is the Helmholtz free energy and s are the thermal mean displacements 
in the defect lattice with respect to the perfect lattice positions. F(s, r)  can be evaluated 
in a quasiharmonic approximation as 

Fqh(s, T )  = 4(s) + F,(s, T )  (2) 
where 4 is the total potential energy of the lattice, including the interaction with the 
defect. F, is the harmonic free energy of vibrations around the thermal mean positions: 

F, = -1/p In Tr exp( -pH,) (3) 

(4) 

with 

H ,  = Ek + f @r’(s)&Ei 

where 4$‘)(s) are the nth derivatives of 4 evaluated at the mean positions and .$ denote 
the dynamic displacements from these positions. By replacing (4) in the previous 
equations the equilibrium condition gives 

4 : ‘ y S )  + 3 @(s) ( E j & )  = 0 (5 )  

where thc angle brackets denote thermal averages. It is well known that for the equi- 
librium condition the quasiharmonic approximation is equivalent to the lowest order of 
perturbation theory for the free energy, which corresponds to retainingonly those terms 
proportional to and 4(4) [E!]. 

Setting 4 = p, + V ,  where p, is the host lattice potential and Vdescribes the defect- 
lattice interaction, we neglect the contribution of the latter to the second term in (5 ) .  By 
developing p,(”’(s) around the perfect lattice positions = 0 we obtain from (5). 

rpj’l + p,$’ si + 1 p,?ri:)SjSk + ... 4- 1 (p,;; + p,$),S, + ... ) ( E  j S X )  =fi(s) (6) 
wherefi(s) = - Vj”(s) is the defect force. Since the perfect lattice positions correspond 
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to the minimum of q, we have qj') = 0. Moreover, as we will see below, we have 
92 = 0 for our model. The averages (Ei&) refer to the defect lattice and can be 
developed around s = 0 as follows: 

( E i E j )  = (Eicf)O + a(EiEJ)/ask Ir=O s k  + ... . (7) 

The second term vanishes because q(') = 0 in the present case. Due to the definition of 
the s as displacements from the perfect lattice positions, they include a term of zero 
order in 9"). Therefore the first term of (7) gives a contribution of the q") order to (6) 
and the contribution of the next non-vanishing term is of the [q(4)]2 order, which will be 
neglected. With all these considerations (6) becomes: 

(qf) + 1 (5,Ej)o)sj + 1/3! ~ $ , S ~ S , S ,  =fi(s). (8) 

For these calculations we use a shell model where every ion is polarizable and the 
oxygen ion in particular includes a fourth-order core-shell coupling in the direction of 
its neighbouring TaS+ ion. Short-range forces couple each oxygen shell to those of its 
nearest K+, Ta5+ and Oz- ions. More details of this model are given in [13]. From 
the model potential we obtain an equation analogous to (8) for the thermal mean 
displacements of their cores ( U )  and shells (w) :  

f' = (S + C2')U + (S + C'Y)W (9) 

f' = (S + CY')u + [S +CY)' + K(T)]w + 1/3! KoB,BL:w@w@w (10) 
where the subscripts 0 and B denote the oxygen ion and the B site of the perovskite 
lattice, respectively, andfT is the total force exerted by the defect on the lattice ions 
andf' is the corresponding force on the shells. We consider the same defect-lattice 
interaction as used previously [SI. S is the short-range force constant matrix and the C 
matrices represent the Coulomb interaction, z denoting ionic changes and y shell 
charges. The matrix L picks up the components of w appropriate to the non-linear 
anisotropic interaction described above. The matrix K(T) is diagonal and contains the 
harmonic core-shell coupling constants with the only modification, for the case of the 
oxygens, as follows: 

KlldT) = KOB + ?KOB,B (5%0,))0 (11) 

where E(O), is the dynamic shell displacement for an oxygen whose neighbouring Ta is 
in the CY direction. The thermal average in (11) is obtained self-consistently in the pure 
lattice. It is this renormalization that gives rise to a temperature dependence of the 
model parameters. 

Equations (9) and (lo), together with the equilibrium condition for the defect, are 
solved as explained in [SI. We performed calculations at 300 K, 100 K and 25 K with the 
results shown in figure 1, which is a schematic representation of the polarized lattice 
region reinforcing the defect dipole moment, shown in detail in figure 4 of [SI. Each box 
represents a unit cell, the arrows denote the defect dipole moments included in the 
corresponding box and the values indicate the total dipole moment of the corresponding 
unit cell. We note that the Li displacement is almost independent of temperature. The 
total effective dipole moment remains fairly constant above 100 K, while it decreases 
significantly at 25 K. Similar behaviour is observed for the size of the polarized region, 
thus suggesting that the two magnitudes are closely related. These temperature effects 
differ from those predicted by Vugmeister et al [lo], whose theory takes into account 
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Figure 1. Schematic representation of the polarized region reinforcing the Li dipole at 
different temperatures. Each box wrresponds to the height afa  lattice constant a = 4 A and 
the values inserted give its dipole moment in units of Pti. The position of the Li dipole is 
indicated by the arrow. 

the electrostatic interaction of a given dipole with the field originated by other defects 
and modified by lattice phonons [14]. Moreover, they treat an effective diatomic cubic 
IatticewithaLorentzfactoryforthedefect sitedefinedfor theperovskitecellasfollows 
[15]: 

with a = 0.69. Therefore this theory does not allow a self-consistent evaluation of y. 
Nor is it clear whether such a factor can be defined uniquely in an inhomogeneously 
polarized lattice. 

Attempts to calculate P, and P,,,< on the basis of a linearly polarizable [16] point 
charge model yield PL, = 1. le 8, and P,= - l e  A, independently of T.  The predictions 
of the non-linear shell model [2] are thus quite distinct from earlier predictions based 
on interaction between impurity dipoles and soft modes [lo, 141 and based on linear 
polarizability [3].  The finding may thus he subjected to experimental test. 

3. Summary of the experimental evidence and interpretation 

We start by summarizing the experimental evidence for our theoretical results. The 
Li displacement S was obtained from a measurement of the energy spectrum of the 'Li 
nuclear dipole in a magnetic field. This experiment determined the average electric field 
gradient at the Li position during the nuclear coherence period, about W 5  s. The 
determination of the displacement 6 is based on a model calculation: the surrounding 
ions are considered to be nominal ionic charges giving rise to a field gradient at the Li 
site that depends on position. Within this approximation, the displacement was found 
(171 to be 1.268,. This displacement corresponds to the maximum distortion possible 
if both Li and the ligandsare considered hard sphereswith nominalionic radii. According 
to the experiment, 6 is independent of Tand of Li concentration at low x .  
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Figure 2. Polarization at T, for samples with 
different Li concentrations x .  The tangent cor- 
responds to aP/ax= l . lCm-?  Theory pre- 
dicts 52 C m-2 and a saturation at 50 mC m +  
Data are from [7]. 

Figure 3. Dielectric susceptibility versus Li wn- 
Centrationxat T,. Forlown,evaluationofcluster 
size (equation (13)) is possible. 

The local polarization around one displaced Li exceeds that of the bare Li: an 
experiment in which the KTL was cooled in a field and where the charge release was 
measured on reheating gave a local polarization of about 4.Ce ,&per Li site. The effective 
temperature for freezing the polarization can be estimated to be about 25 K in this 
experiment. Upon furthercooling thelocal polarization is frozen in at the valueobtained 
with Tf = 25 K. Since PIS is not necessarily at equilibrium below T,, its temperature 
dependence below T, is irrelevant for the evaluation of this model. We find thus that the 
value for PLi is correctly predicted by both the non-linear and the linear polarizability 
models. The enhancement factor PloJPLi = 4 is correctly predicted by the non-linear 
polarizability theory. The linear polarizability has, ofcourse, ascreeningeffect, thus the 
enhancement factor predicted [ 161 is <l. The phononcouplingmodel [lo] overestimates 
Ploe/Pti - ~ y / 3  - 10'by a factor of 25. 

The spatial extension of the local polarization can be obtained from figure 1: 99% of 
the polarization is found in a region whose radius r is about three lattice constants. 
Accordingly, the total polarization should be a linear function of Li concentration 
for x < (r/a)-3 = 0.04 with a slope aP/ax  = NP, = 1.1 C m-'. Furthermore P should 
saturate for largex at a value of 50 mC m-'. Inspection of figure 2confirms these results 
almost quantitatively. Deviations and the rounding at about x = 0.04 are attributed to 
interaction between local polarizations which increase as the concentration increases. 

Above Tf, PI, is a dynamic variable to be measured by susceptibility. Independent 
local polarizations have a Debye susceptibility given by .cd - NP?,,/~~TE,, which is 
clearly contrary to observation [9]. Instead E rises faster than with 1/T, and below the 
freezing temperature it stays about constant. In figure 3 we have plotted E ( X )  at Tf for 
various concentrations. We note a large x-dependent enhancement for which we have 
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klgure. 4. Polarization correlation length (or cluster site) ( X )  from second-harmonic gen- 
eration and cluster size from dielectric susceptibility (0). 

a plausible argument. Assume that the effect of interaction is to align dipoles within a 
short region and that these regions are mutually independent. In this (independent- 
cluster) approximation 

(13) 

We evaluate the correlation factor n from the experiment and express it  in terms of 
length 5 

E - ( N / n )  (nP1,,)2/3kT&o - n f D .  

6 = ~(n , ’x ) ‘ ’~ .  (14) 
Infigure4thislengthisplottedversusxandisfoundtobe=6nmforx < 0.02.Asxgrows 
larger, this approximation is bound to fail. A direct observation of polar correlation is, 
however, possible in this regime by means of second-harmoniclight generation 1181, the 
resultsof whichare alsoplottedinfigure4. Wenote that the twodatasetsarecompatible 
and that both present clear evidence for correlation which is a direct consequence of 
interaction between the local polarizations. 

We note that within the independent-cluster approximation, the correlation length 
is of no consequence for the total polarization: the polarization per cluster increases at 
the same rate as the number of clusters decreases. Our findings are thus internally 
consistent and consistent with cluster formation, The number of local polarizations 
forming a cluster is, however, an ingredient that is not taken into account by present 
theory hut a plausible extension based on interaction between local polarizations is likely 
to do so. 

4. Conclusion 

The non-linear shell model accounts for the local properties in a quantitative way: it 
predicts the value of the Li displacement in KTa03 and the enhancement of the local 
polarization due to the polarization cloud forming around Li both as a function of 
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temperature. It also predicts that the spatial extension of the polarization cloud is of the 
order of 25 unit cells which allows the qualitative conclusion that Li concentrations 
above 1% should give rise to interaction between local polarizations. All of these 
features are bome out by experiment. Our microscopic model includes the short-range 
interactions between the Li' and the surrounding ions, which are essential to explain 
the appearance of a lattice region reinforcing the Li dipole moment. 
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